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Introduction 

An applicant for admission to college is 
usually required to take a series of tests in 
support of his application. In many instances 
the applicant's scores are then weighted and 
added to form one composite score, and this score 
will determine the success or failure of his ap- 
plication. The reasoning behind this procedure 
is that this composite score is presumed to re- 
late to, and therefore can be used to predict, 
ability to succeed in college. 

A psychologist might argue, however, that 
potential applicants form not one population, but 
rather they should be regarded as comprising 
several populations each having distinct psycho- 
logical and cultural properties. This being the 
case it would be better, as far as uniform ac- 
curacy of prediction is concerned, to use a dif- 
ferent set of weights for different populations 
rather than the same weights for everybody. 

We shall suppose that it is not possible to 
measure directly those psychological and cul- 
tural factors which would place a candidate into 
one of these populations. The question is how 
should we estimate his ability to succeed? Sev- 
eral possibilities suggest themselves. Firstly 
we can use the same weights for everybody, as we 
are supposing is currently done. But if we knew 
the best weights for each population perhaps we 
could use the observed scores for an individual 
to first classify him into one of the populations 
and then use the weights that are best for that 
population. Alternatively, if we know the prob- 
ability that the new individual came from the 
i -th population, i = 1, ..., k, perhaps we should 
weight the separate population estimates with 
these probabilities. 

The problem, then, is the following: from 
each of k populations we have independent sample 
observations on the variables (y, x , j 1, ., 
p), the size of the sample in the igth population 
being no i = 1, k. In addition we have ob- 
servati8ns on (x4) for an individual known to 
have come from ofie of the k populations, but from 
which one is not known. We wish to estimate the 
value of y for this new individual. 

First we shall present a maximum likelihood 
solution and then a discussion of methods of 
pooling the regressions of the separate popu- 
lations. 

The Maximum Likelihood Approach 

Suppose we have k populations, with ni ob- 
servations from the i -th population, where 
E ni = n. Let the observations on (x ) for the 

new observation be denoted by X , a 1) 

vector. The Y -value corresponding to X will be 
denoted by Y. Assume y is a scalar random vari- 
able and x is a (p x 1) vector random variable 
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with the following distribution in the i -th 
population 

N(xtk, ) 

E), i = 1, k 

where and y, are (p x 1) parameter vectors, 
and E it a (p p) matrix, E being assumed the 
same-in all populations. 

Let denote the (n x 1) vector of obser- 
vations on y in the i -th Population, and let 
denote the (p x ni) matrix of observations on 
x in the i -th population. 

In the manner of Hartley and Rao (1968) we 
introduce an indicator vector 9 where 

(el, such that E = 1 

where 8 = 1 if the new individual came from the 

i -th population and 8i = 0 otherwise. 

The likelihood function for k, 
and Y* is 

Y *) = L x L2 x L x 

where 

[ 
- )] 

L2 

C I2 
lk t 

exp [- ) (j- 3)] 
\exp 

Taking logs: 

log L = P + Q + constant 

where 

P [ 

k 
+( - E )2] n ; 1 



n+ 
log E 2 

Thus the conditional MLE's of and E can be 
obtained prom standard multivariate theory (e.g. 
Anderson, (1958) p. 24+8). These are 

1 k 
n + 1 il 

where 
In the next two sections we find the con- n 

ditional maximum likelihood estimates given A = (X - )t, for i s 

= 1. Given = 1 denote the conditional j =1 

likelihood estimates of the parameters 

by 2, Y and 

Conditional of Y , and 
)t 

0 gives + (X - - 

X*t) = + X*Y*. (1) 

- 0 for i + s gives 

Estimating 

and finally 

a L - gives 

n + i )t( 

+ (X* )21 . 

= gives 

^* 
Y = . 

Substituting (4+) in (1) we get 

Thus for all 

i= 1, k. 

Substituting (4+) in (3) we get 

(2) Substituting these conditional MIE's into 
the expression for the likelihood above we see 
that max (14 x L2) is independent of s. The maxi. 
mum value or is 

C 

n+1 

(3) 

(4) 

(5) 

=n (Y3- (6) 

Conditional of and E 

In the expression for the likelihood above 
only the terms and contain E. Thus 
we can find the of and E by maxi- 
mizing x . But since es = 1 we simply 

have a siituat on where there are ni observations 

from E), s, and ns + 1 from E). 
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A 

where is a function of s, and so we will de- 

note it by us the MIE of s is that ue 
which minimizes or equivalently 

Discussion 

i. The regression is estimated from 
n (= E ni) observations on which y and 
x are available. 

2. Classification is based on all the n+ i 
observations on which x is available. 

3. The procedure operates as follows: 

a) Compute 

k n 
= E Ei(Xij- )t 

i=1 j=1 

+ (X*- Xs)(X*- 

for all s = 1, k. 

b) If r is the value of s for which 

is minimum, assign X* to the 

r -th population. 



c) Estimate by 

where 

= 

Pooled Regressions 

We assume the usual regression model in 
each population, and we let the true regression 
in the i -th population be denoted by R ,,the 
estimated (least squares) regression b$-Ri, the 
variance of the dependent variable by , and 
the standard error of estimate by 

yi = Ri + j = 1, ni 

where ^ N(0, ) 

For the special case of simple linear regression, 

and 

Ri + 

= ai + 

(x 

= \ E (xij + 

where ai and are the usual least squares esti- 
mates. 

The population of origin of the new indi- 
vidual is unknown, but we suppose that the prob- 
ability he came the i -th population is 
i = 1, k. 

We propose to investigate several methods 
of pooling the regressions. Which method is 
beat will depend on the criterion used to evalu- 
ate the predicting ability of these methods. We 
propose to use the mean square error (MBE) since 
this is attractive in itself, and can be looked 
at as comprising the variance of the estimator 
plus the square of the bias. Thus minimizing 
the MBE is controlling the size of both these 
parameters. 

Expectation Estimator (EE) 

The simplest pooled estimator is 

EE = E niRi (7) 

The expected value of this is E For con- 
venience we 1 denote this by R. Thus 

E(EE) = E (8) 

The expected in predicting the mean 
value of y is 
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NSE(EE) + (R 11.))2] 

(9) 

= E - R2 + E 

A Weighted Expectation Estimator (WEE) 

Since we are using minimum as our 
criterion of goodness are not restricted to 
using estimates whose expected bias is zero. 
Thus we consider 

A 

WEE = a E niRi (10) 

where a is a constant to be determined. To find 
the value of a which minimizes the we set 
equal to zero the derivative of 

E = a 2 
E 

+ nj(a R Rj)2 

Solving for a we get 

a = 

For this optimum value of a the expected value 
and the E of this estimate are 

E(WEE) . (12) 

MSE(WEE) E ni(Ri- 11)2 

+ E 
+ 

Optimal Weighted Estimator (OWE) 

(13) 

The two estimators considered so far do not 
take into consideration the possibility that 
there may be different sample sizes and therefore 
differing amounts of information available in the 
different populations. So let us consider an 
estimate 

OWE = E aiRi . (14) 

where the ai, i = i, k are constants chosen 
to minimize the expected MBE: 

E = 
E 
a + E r aiRi - Rj )2 

j 

Differentiating this with respect to i = 1, 
k, and setting the derivatives eq&l to zero 

we solve for the ai: 



(15) 

The estimator, the expected value, and the MBE 
using these optimal ails are 

OWE 
= 

1 + E 

(16) 

R (17) 

1 + E 
i 

= E R)2 + (18) 

1 +E 

Constrained Weighted Estimator (CWE) 

For those who would like the coefficients 
to sum to unity we offer: 

= where E ai = 1. (19) 

To find the optimum ai we differentiate with 
respect to ai, i = 1, ..., k 

= E aloi + E n(E aiRi- Rß)2 + x(E ai- 1) 
i 

and set the derivatives equal to zero. To solve 
these equations we first multiply the i -th 

equation by and add aver i. Then multiply 

the i -th equa %ion by and add over i. These 

two equations can be salved for E aiRi and X, 

and thus we can solve for ai: 

R2 R 

D(1 E - E + ) 

R.2 

where D = (1 + E ) E - which is 
i i i 

positive by Schwarz' inequality. 

(20) 

Thus the expected value and the of the 
CWE are 
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E(CWE) = + - (21) 

NSE(CWE) = E ni(Ri - R)2 

i 

2 

(1+E-RE)2 
(22) 

D(1+E) 

Lumped Estimator (LE) 

Up to this point we have had to estimate 
the regression in each population, and then make 
our prediction using some set of weights. An al- 
ternative method is to simply lump all obser- 
vations together as if they were from one large 
population, estimate the regression in that large 
population, and use this regression for prediction 
We shall call this the Lumped Estimator (LE). 

One situation where this would be a desir- 
able alternative is where the degrees of freedom 
in the separate populations are rather small for 
the separate estimations. 

Comparing the ability to predict of the LE 
with that of earlier weighted estimators becomes 
very involved. We present here a comparison for 
the case of simple linear regression, and we make 
one or two simplifying assumptions. We shall use 
the following notation: 

LE=a+ßx (23) 

E E (yij - y)(xij - 

(xij 

= n(W + B) 

E E (xij 

B = E pi(xi - 

x = E pizi 

Now it is easily shown that 

E + E - 

D x 

(24 ) 

(25) 



where 

= - )2 

For simplification we shall assume that it is 
approximately true that 

Di 
= W for all i = k. 

Note that this is assuming that the "within -sam- 
ple" variance of the x is approximately the 
same in all populations In this case 

-W+BEPißi W+Bß 

where = (26) 

E - 

Note that is the slope of a weighted regres- 
sion line fitted to the centroids of the k 
samples. 

Thus the lumped estimator is 

LE =Y +(x -x) Epißi 

+ B (x i)(;* - E P1ß1) 

= E + - x) 

+ 
B 
B(x x)(ß* - E (27) 

The expected value is 

E(LE) = + - 

(x- x)(ß * 

where = E 

(x - x) 

=E pi{ W+B 

(x 

The MBE of the Ind Estimator 
If, as earlier, we let denote the prob- 

ability that the individual ccmmes from the i -th 
population we can write down the expected MBE: 

MBE(LE) = var(LE) E - E(LE))2 

where var(LE) and are given in equations 

(31) and (28). 

There now arises the problem of comparing 
this MBE with the MBE of earlier pooled esti- 
mators. This is quite difficult, especially if 

we can assume nothing about the relationship 
between pi and Even if the total sample is 

random, a complete analysis would discuss the 
variance of pi as and estimate of If the 
sample is large p4 would approximate But 

anyway, in order thaat we can get a feel for the 
relative goodness of LE as opposed to EE, the 
expectation estimator, we shall assume that it 
is approximately true that 

= (32) 

In this case we can show that 

= (1 + W + B + 

+ [E x) 

+W+B (x- (33) 

(28) For comparing this with MBE(EE) in equation 
(9) we note first that can be written: 

(29) 
4. 

(x- x1)2 

Note that may be regarded as the slope of the 
regression between populations, and an average 
slope within populations. 

Now is the usual least squares estimator. 
Let us assume for the sake of simplification that 
the variance of y in the i -th population is a 
constant, i.e. 

1 = 1, for all i = 1, k. (30) 

Thus 

var(LE) = (1 + (31) 

Note that if the are not assumed equal the 
variance of LE can found from an alternative 
form of LE, namely 
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and since we are assuming 1 for all i, and 
that ni = n 

(x - 
W ) 

2 
= (1 + 

Thus from equation (9) 

= 2 + 

+ E - (34) 



Comparison of the Pooled Estimators 

It can be seen from equations (9), (13), 

(18), and (22) under what circumstances the var- 
ious pooled estimators would be superior, and 
by how much. It is clear that OWE is best, but 
it must be remembered that the optimal weights 
are functions of the parameters, and therefore 
have to be estimated. Estimating these weights 
will obviously increase the of these esti- 
mators. Since it seems reasonable that any im- 
provement, if any, would be due to a large extent 
to an improved estimate of the variance, an in- 
vestigation of the of the estimated OWE 
should estimate the Ri's and the 

One observation on M5E(OWE). We note that 
this is smalliwhenever at least one coefficient 

of variation is large at the value of x we 

are estimatingifor. A small provides some 
evidence that the new individual came from the 
-th population. And from equation (15), if 

is large then the weight for the i -th is large. 

In an unpublished paper Francis (1969) con- 
siders the related problem of estimating the re- 
gression in a particular population when sample 
observations are also available from other popu- 
lations which are considered somewhat similar. 
There again, a comparison of the pooled esti- 
mators will have to investigate the effect of 
estimating the optimal weights. 

Comparison of and LE 

By comparing equations (33) and (34) we can 
say something about versus LE. For example, 
suppose 

E - = 

This would be approximately true, for instance, 
if all the are roughly equal, or alternative- 
ly if all the were roughly equal. (Figures 

1 and 2 display the concentration ellipses for 
two examples for which k = 3, where all the 
are roughly equal, arid where the within -sample 
variances of x would be approximately all equal. 
The slope of the line AB is and the slope of 
CD is 0*.) In this case the difference between 

(33) and (34) is 

MiE(LE) - NSE(EE) = z2[(1 + w) 

B2W 2 + 

where 

(w + B)2 

(x - 

(35) 

The following observations can be made: 

i) Very small B could imply a very 
large *: EE is better (see 
Figure 2) . 
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ii) When B approaches W in size and 
when (ß* - (3)2>>0, then BE is 
better, except when x and 
then: 

iii) When B approaches W in size, and 
x then LE is beat. 

iv) When B is extremely large we would 
surely modify our given the 
x observation on our new individual, 
to eliminate most populations, un- 
less the original samples were not 
random. (See section on Posterior 
Probabilities below.) 

Posterior Probabilities 

We have been assuming that is known for 
all i. But as was suggested in observation (iv) 
above, if these are only prior probabilities, and 
if the original observations on (xi) were a ran- 
dom sample from all populations, teen these sam- 
ple observations, together with the observations 
on (xi) for the new individual, should be used to 
modify the We shall not pursue this topic 
in this paper. 

Figure 1 
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